Norm of a Bethe Vector and the Hessian of the Master Function
نویسنده
چکیده
We show that the Bethe vectors are non-zero vectors in the slr+1 Gaudin model. Namely, we show that the norm of a Bethe vector is equal to the Hessian of the corresponding master function at the corresponding non-degenerate critical point. This result is a byproduct of functorial properties of Bethe vectors studied in this paper. As other byproducts of functoriality we show that the Bethe vectors form a basis in the tensor product of several copies of first and last fundamental slr+1 modules and we show transversality of some Schubert cycles in the Grassmannian of r + 1-dimensional planes in the space Cd[x] of polynomials of one variable of degree not greater than d. ∗ Department of Mathematical Sciences, Indiana University Purdue University Indianapolis, 402 North Blackford St., Indianapolis, IN 46202-3216, USA Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA
منابع مشابه
Remarks on Critical Points of Phase Functions and Norms of Bethe Vectors
Abstract. We consider a tensor product of a Verma module and the linear representation of sl(n + 1). We prove that the corresponding phase function, which is used in the solutions of the KZ equation with values in the tensor product, has a unique critical point and show that the Hessian of the logarithm of the phase function at this critical point equals the Shapovalov norm of the corresponding...
متن کاملOn the Behavior of Damped Quasi-Newton Methods for Unconstrained Optimization
We consider a family of damped quasi-Newton methods for solving unconstrained optimization problems. This family resembles that of Broyden with line searches, except that the change in gradients is replaced by a certain hybrid vector before updating the current Hessian approximation. This damped technique modifies the Hessian approximations so that they are maintained sufficiently positive defi...
متن کاملA Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملA class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions
In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...
متن کاملSolutions of Fuzzy Linear Systems using Ranking function
In this work, we propose an approach for computing the compromised solution of an LR fuzzy linear system by using of a ranking function when the coefficient matrix is a crisp mn matrix. To do this, we use expected interval to find an LR fuzzy vector, X , such that the vector (AX ) has the least distance from (b) in 1 norm and the 1 cut of X satisfies the crisp linear system AX = b ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008